CP violation in hadronic penguins at BABAR ## James F. Hirschauer University of Colorado Seminar at Fermi National Accelerator Laboratory January 27, 2009 1 ### Overview - CP violation introduction. - Measuring $\sin 2\beta$ in $b \to c\bar{c}s$ modes such as $B^0 \to J/\psi K_S^0$. - Motivation for measuring $\sin 2\beta_{\text{eff}}$ in $b \to q\bar{q}s$ (q = u, d, s) penguins. - $B^0 \to \eta' K^0, \phi K_S^0, \omega K_S^0, \pi^0 K_S^0$ - Previous results. - PEP-II collider, BABAR detector, and dataset. - $B^0 \to \eta' K^0$ analysis (part of my thesis). - Recent results from other penguins. - Discussion. ## Symmetries • Discrete transformations C, P, and T: - Parity $(P):(t,\mathbf{x})\to(t,-\mathbf{x}).$ - Time-reversal $(T):(t,\mathbf{x})\to(-t,\mathbf{x}).$ - Charge-conjugation (C): particles \rightarrow anti-particles - Strong and electromagnetic forces conserve C, P, and T. - In 1956, the weak force was observed to violate P; the V-A form of the weak force manifestly violates C and P. - It was thought that weak interactions conserved CP, until Cronin and Fitch observed $K_L^0 \to \pi^+\pi^-$ in 1964. - In `90s, B-factories built to test CKM picture of CP violation in decays of B mesons. ### CKM matrix and CP violation Consider the coupling of quarks to charged gauge bosons in the flavor (interaction) basis: $$\mathcal{L}_W = g_W \left(\overline{u}^L \gamma^\mu W_\mu^+ d^L + \overline{d}^L \gamma^\mu W_\mu^- u^L \right)$$ • Transform to mass basis with $u^{L\prime} = U^u u^L$, $d^{L\prime} = U^d d^L$: $$\mathcal{L}'_{W} = g_{W} \left(\overline{u}^{L} \gamma^{\mu} W_{\mu}^{+} V d^{L} + \overline{d}^{L} \gamma^{\mu} W_{\mu}^{-} V^{*} u^{L} \right)$$ where $V = (U^{u\dagger}U^d)$ is the CKM quark mixing matrix. - CKM matrix is 3×3 unitary matrix characterized by three real parameters and one irreducible phase. - Because of CKM phase, $V \neq V^*$ and \mathcal{L}'_W is not invariant under CP. $$\begin{array}{c} \textbf{CKM} \\ \textbf{basics} \end{array} \hspace{-0.2cm} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$ - By convention, $V_{\rm CKM}$ takes down-type quarks from flavor to mass basis. - In Wolfenstein parameterization (to order λ^3): $$V_{\text{CKM}} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$ where λ is the sine of the Cabibbo angle ($\lambda = V_{us} \simeq 0.22$) and A, ρ , and η are real and of order 1. • $\eta \neq 0$ implies CP violation. ## Unitarity triangle • Unitarity of $V_{\rm CKM}$ yields $$\sum_{i=u,c,t} V_{ij}V_{ik}^* = 0.$$ $$(j = d, s, b; k = d, s, b; \text{ and } j \neq k)$$ • Useful for the B system, this equation $$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$ describes a triangle in complex plane of roughly equal sides. - The apex is at $\rho + i\eta$, so that non-zero area implies CP-violation. - The angles are defined $$\alpha \equiv \arg\left[-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right], \beta \equiv \arg\left[-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right], \text{ and } \gamma \equiv \arg\left[-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right].$$ ## $B\overline{B}$ Time Evolution - At BABAR, pairs of B mesons are created in entangled states in $\Upsilon(4S)$ decays. - Mass and flavor eigenstates differ: $$|B_L\rangle = p|B^0\rangle + q|\overline{B}^0\rangle |B_H\rangle = p|B^0\rangle - q|\overline{B}^0\rangle$$ $\Delta m_B \equiv m_H - m_L$ $\Delta\Gamma_B \equiv \Gamma_H - \Gamma_L$ $M \equiv (m_H + m_L)/2$ $\Gamma \simeq \Gamma_H \simeq \Gamma_L$ - Neutral B's, created in flavor states, mix via second-order weak process (box diagram). - A B^0 meson at t=0 can be written at t: $$|B_{\rm phys}^0(t)\rangle = e^{-iMt}e^{-\Gamma t/2} \left[\cos\left(\frac{1}{2}\Delta m_B t\right)|B^0\rangle + i\frac{q}{p}\sin\left(\frac{1}{2}\Delta m_B t\right)|\overline{B}^0\rangle\right]$$ - No CP violation in mixing, q/p is pure phase. - Note $\Delta\Gamma_B \ll \Delta m_B$, $\Delta\Gamma_K \simeq 2\Delta m_K$, $\Delta m_B = 100 \cdot \Delta m_K$. ## Mixing-induced CP violation - Decay to CP eigenstate f_{CP} ($\psi K_S^0, \eta' K^0$) accessible from B^0 and \overline{B}^0 involves interference between amplitudes for mixing (q/p) and decay $(A_{f_{CP}}, \overline{A}_{f_{CP}})$. - The observable time-dependent decay rate asymmetry: $$A_{CP}(t) = \frac{\Gamma(B_{\text{phys}}^{0}(t) \to f_{CP}) - \Gamma(\overline{B}_{\text{phys}}^{0}(t) \to f_{CP})}{\Gamma(B_{\text{phys}}^{0}(t) \to f_{CP}) + \Gamma(\overline{B}_{\text{phys}}^{0}(t) \to f_{CP})}$$ • Decay rates Γ (now called f_{\pm}) are $$f_{\pm}(t) = \frac{e^{-t/\tau}}{4\tau} \left[1 \pm S_{f_{CP}} \sin(\Delta m_B t) \mp C_{f_{CP}} \cos(\Delta m_B t) \right]$$ • Mean B^0 lifetime is τ , the CP-violation parameters S_{fCP} and C_{fCP} are $$S_{fCP} \equiv \frac{2\operatorname{Im}\lambda_{f_{CP}}}{1+|\lambda_{f_{CP}}|^2}, \quad C_{fCP} \equiv \frac{1-|\lambda_{f_{CP}}|^2}{1+|\lambda_{f_{CP}}|^2}, \quad \lambda_{f_{CP}} \equiv \eta_{f_{CP}} \frac{q}{p} \frac{A_{\overline{f}_{CP}}}{A_{f_{CP}}}$$ • For CP conservation, $A_{CP} = S_{f_{CP}} = C_{f_{CP}} = 0$. ## Experimental Aside... - So far, $A_{CP}(t)$ and $f_{\pm}(t)$ are written in terms of the flavor at creation and the time of decay of a B meson (B_{CP}) . - We can't measure these, BUT ... - Recall coherent B meson pairs (B_{CP} and B_{tag}). - We can determine: - flavor at decay (tag) of the other B meson ($B_{\rm tag}$), - difference between proper times of decays of B_{CP} and B_{tag} . - We can write: $$f_{\pm}(\Delta t) = \frac{e^{-|\Delta t|/\tau}}{4\tau} \left[1 \pm S_{fCP} \sin(\Delta m_B \Delta t) \mp C_{fCP} \cos(\Delta m_B \Delta t) \right]$$ where $\Delta t \equiv t_{CP} - t_{\text{tag}}$ and the upper (lower) sign denotes a decay accompanied by a B^0 (\overline{B}^0) tag. • We use $f_{\pm}(\Delta t)$ in the ML fit to extract $S_{f_{CP}}$ and $C_{f_{CP}}$ from the data. ## $\sin 2\beta$ from $b \to c\bar{c}s$ $$\lambda_{f_{CP}} \equiv \eta_{f_{CP}} \frac{q}{p} \frac{\overline{A}_{\overline{f}_{CP}}}{A_{f_{CP}}}$$ $$\eta_{fCP}$$ CP eigenvalue of f_{CP} . $q/p \simeq V_{tb}^* V_{tb} / V_{tb} V_{td}^*$ From B mixing, independent of f_{CP} . $A_{\psi K_S^0} \propto V_{cb} V_{cs}^*$ Single amplitude for $B^0 \to J/\psi K_S^0$. $V_{cs} V_{cd}^* / V_{cs}^* V_{cd}$ From K mixing in the final state. • In SM, we expect (almost exactly): $$\lambda_{\psi K_S^0} = -\left(\frac{V_{td}V_{tb}^*}{V_{cb}^*V_{cd}}\right) \left(\frac{V_{cb}V_{cd}^*}{V_{td}^*V_{tb}}\right)$$ $$S_{\psi K_S^0} = \text{Im}\lambda_{\psi K_S^0} = \sin 2\beta \qquad C_{\psi K_S^0} = \frac{1 - |\lambda_{\psi K_S^0}|^2}{1 + |\lambda_{\psi K_S^0}|^2} = 0$$ • No CP violation in decay because $$\left| \frac{A_{\psi K_S^0}}{A_{\psi K_S^0}} \right| = 1$$; only ~1 amplitude contributes. ## $\sin 2\beta_{\rm eff}$ from $b \to q\bar{q}s$ penguin decays - $b \to q\bar{q}s$ decays occur via loop processes in SM. - $b \rightarrow s$ penguin diagrams carry same phase as $b \rightarrow c$ tree diagram. - Penguins also sensitive to $\sin 2\beta$. - S/C can be non-zero when two amplitudes with differing weak and strong phases contribute to the process. - Color-suppressed tree and CKM-suppressed penguin amplitudes pollute the picture. - $|\overline{A}_{\eta'K^0}|/|A_{\eta'K^0}|-1=\mathcal{O}(\lambda^2)$, so we expect: $$S_{\eta' K^0} = \sin 2\beta_{\text{eff}} \simeq \sin 2\beta$$ $C_{\eta' K^0} \simeq 0$ ## ΔS and new physics - $\sin 2\beta_{\text{eff}}$ measured in $b \to q\overline{q}s$ penguin decays is sensitive to heavy, non-SM particles in loop. - Deviations of ΔS ($\equiv \sin 2\beta_{\text{eff}} \sin 2\beta$) from zero indicate new physics. - However, even in SM, channel dependent effects cause $\Delta S \neq 0$. - There are predictions for ΔS from - QCD factorization. - Soft collinear effective theory. - Flavor SU(3) symmetry. - $\eta' K^0$ and ϕK_S^0 are theoretically cleanest modes with $\Delta S \sim 0.03$. Yellow band is uncertainty on $\sin 2\beta$ (± 0.03). ¹QCDF Beneke, PLB620, 143 (2005) ²SCET/QCDF Williamson, Zupan, PRD74, 014003 (2006) ³QCDF Cheng, Chua, Soni, PRD72, 014006 (2005) ⁴SU(3) Gronau, Rosner, Zupan, PRD74, 093003 (2006) ### Previous Results First observation of CP violation in charmless B decays. | | BABAR ¹ | Belle ² | |------------------------------------|---------------------------|---------------------------| | $S_{\eta'K^0}$ | $0.58 \pm 0.10 \pm 0.03$ | $0.64 \pm 0.10 \pm 0.04$ | | $C_{\eta'K^0}$ | $-0.16 \pm 0.07 \pm 0.03$ | $-0.01 \pm 0.07 \pm 0.05$ | | $-\eta_{\eta'K^0_S}S_{\eta'K^0_S}$ | 0.62 ± 0.11 | 0.64 ± 0.11 | | $C_{\eta'K^0_S}$ | -0.18 ± 0.07 | 0.03 ± 0.07 | | $-\eta_{\eta'K_L^0}S_{\eta'K_L^0}$ | 0.32 ± 0.28 | 0.46 ± 0.24 | | $C_{\eta'K_L^0}$ | -0.16 ± 0.07 | -0.09 ± 0.16 | World averages (Summer `07) for $b \rightarrow s$ penguins. $\sin 2eta_{ m eff}$ - In 2005, naive average of $b \rightarrow s$ penguins differed from $b \rightarrow c\bar{c}s$ was 3.7σ . - At last publication, discrepancy was 1.6σ (neglecting $f_0K_s^0$). Recent results presented today for these modes. ¹Babar Collab., PRL 98, 031801 (2007). ²Belle Collab., PRL 98 031802 (2007). #### PEP-II - Asymmetric-energy e^+e^- collider. (9 GeV e^- , 3.1 GeV e^+) - Center of mass (CM) is boosted in lab ($\beta \gamma = 0.56$). - Separation of $B\overline{B}$ decay vertices: $20\mu\mathrm{m}\!\rightarrow\!200\mu\mathrm{m}$. - $\sqrt{s} \equiv E_{\rm CM} = 10.58 \text{ GeV}$ (Mass of $\Upsilon(4S)$) - $\mathcal{B}(\Upsilon(4S) \to B\overline{B}) \simeq 100\%$ - Max luminosity four times that of design: $1.2 \times 10^{34} \mathrm{cm}^{-2}
\mathrm{s}^{-1}$ ## BABAR Detector #### Silicon Vertex Tracker 5-layer SVT measures track impact parameters. #### Drift Chamber (DCH) - 40-layer, small-cell. - Measures p_T . - PID for tracks with $p_T < 0.7 \text{ GeV from } dE/dx$. # Magnet 1.5 Tesla, superconducting magnet. #### DIRC 144 silica bars measure angle of Cherenkov cone, primary PID for tracks with $p_T > 0.7 \text{ GeV}$. #### ElectroMagnetic Calorimeter (EMC) 56 rings of CsI crystals. Detects energy from photons, electrons, and K_L^0 . #### Instrumented Flux Return (IFR) Resistive plate chambers and limited streamer tubes detect muons and $K_{\scriptscriptstyle L}^0$. ## Data & Monte Carlo - Data collected 1999-2008. - 426 fb^{-1} on-resonance. $(\sqrt{s} = 10.58 \text{ GeV})$ - 54 fb⁻¹ off-resonance. - $B\overline{B}$ production cross-section of ~1.1 nb yields 467 million $B\overline{B}$ pairs. ## Large samples of GEANT4 MC - Exclusive samples for signals and backgrounds from B decays (0.2 -1.0 million events each). - Inclusive sample of generic BB decays (1.3 billion events). ## $B^0 \to \eta' K^0$ Analysis - Measure S and C using seven sub-decay modes. - Crosscheck with $\eta'_{\rho\gamma}K^+$ and $\eta'_{\eta\pi\pi}K^+$ #### Decay Name Key $$\eta'_{\eta\pi\pi}: \eta' \to \eta\pi^{+}\pi^{-}, \eta \to \gamma\gamma$$ $\eta'_{\rho\gamma}: \eta' \to \rho\gamma$ $\eta'_{5\pi}: \eta' \to \eta\pi^{+}\pi^{-}, \eta \to \pi^{+}\pi^{-}\pi^{0}$ $K_{S}^{0}: K_{S}^{0} \to \pi^{+}\pi^{-}$ $K_{S}^{0}: K_{S}^{0} \to \pi^{0}\pi^{0}$ | Mode | BF (10^{-6}) | ϵ (%) | # Evts
Selected | Expected
Yield | |--|----------------|----------------|--------------------|-------------------| | $\eta'_{\eta\pi\pi}K^0_{\scriptscriptstyle S}$ | 3.9 | 27 | 1556 | 500 | | $\eta'_{ ho\gamma}K_{\scriptscriptstyle S}^0$ | 6.6 | 29 | 23905 | 900 | | $\eta'_{\eta\pi\pi}K^0_{s00}$ | 1.8 | 14 | 1175 | 110 | | $\eta'_{ ho\gamma}K^0_{s00}$ | 3.0 | 15 | 28871 | 200 | | $\eta_{5\pi}'K_S^0$ | 2.3 | 17 | 546 | 180 | | $\eta'_{\eta\pi\pi}K_{\scriptscriptstyle L}^0$ | 5.7 | 18 | 14125 | 450 | | $\eta_{5\pi}'K_{\scriptscriptstyle L}^0$ | 3.3 | 11 | 4951 | 170 | | $\eta' K^0$ | 64.9 ± 3.1 | | | 2500 | ## Analysis Overview #### 1. Reconstruction and Selection: - In kinematic fit, reconstruct B candidates from all combinations of tracks and photons. - Apply loose selection criteria, which leave < 1.3 candidates per event. - Select best B candidate based on B vertex probability. #### 2. Maximum likelihood fit: - Fit samples of 500 20k events (depending on decay channel). - Characterize event types (signal, backgrounds) using distributions of variables related to decay kinematics and event-shape. - Simultaneously - isolate signal decays from large background, - extract parameters of interest. #### 3. Potential backgrounds: - 99% of background is continuum $e^+e^- \rightarrow q\overline{q} \ (q=u,d,s,c)$. - \bullet Charmless decays from BB events in several sub-modes. - Charmed B decays in a few sub-modes. ## Candidate Reconstruction - Combine tracks and photons to make B candidates composed of various intermediate resonances. - In fit to entire decay tree, obtain B decay vertex with resolution of ~0.1 mm. • Constrain η' , η , π^0 masses to nominal values; account for K_S^0 lifetime. #### Selection Requirements: - $N_{\text{trks}} \ge N_{\text{tracks in decay mode}} + 1$, - $|\Delta E| \leq 0.2 \text{ GeV}$, - $5.25 \le m_{\rm ES} < 5.2893 \; {\rm GeV}$, - $E_{\gamma} > 30 \text{ MeV for } \pi^0$, - $E_{\gamma} > 50 \text{ MeV for } \eta_{\gamma\gamma}$, - $E_{\gamma} > 100 \text{ MeV in } \eta_{\rho\gamma}'$ - $|\cos \theta_{\rho}| < 0.9$, where θ_{ρ} is the angle between a ρ^0 -daughter π^+ and the η' in the ρ^0 rest frame, - invariant masses of resonances to be 2-3 widths from nominal mass. - K_{S+-}^0 vertex fit probability > 0.001, - K_{S+-}^0 flight length at least 3 times the uncertainty on the flight length, - $|\Delta t| < 20 \text{ ps},$ - $\sigma_{\Delta t} < 2.5$ ps, where $\sigma_{\Delta t}$ is the uncertainty on Δt . ### Maximum likelihood fit • For N measurements of quantities \mathbf{x} distributed according to a probability density function (PDF) $\mathcal{P}(\mathbf{x}, \boldsymbol{\alpha})$ where $\boldsymbol{\alpha}$ is a set of parameters, the likelihood is defined: $$\mathcal{L} = \prod_{i=1}^{N} \mathcal{P}(\mathbf{x}_i, oldsymbol{lpha})$$ - Given the data \mathbf{x}_i , the maximum of \mathcal{L} over $\boldsymbol{\alpha}$ gives an unbiased estimate of $\boldsymbol{\alpha}$. - For m components of the data, each of fraction f_j ($\sum f_j = 1$), the PDF has form: $$\mathcal{P}(\mathbf{x}_i, \boldsymbol{\alpha}) = \sum_{j=1}^{n} f_j \mathcal{P}_j(\mathbf{x}_i, \boldsymbol{\alpha}_j)$$ • Since N is randomly distributed, include Poisson factor for making N measurements when expecting $\sum \nu_i$: $$\mathcal{L} = \frac{e^{-(\sum \nu_j)}}{N!} \prod_{i=1}^N \sum_{j=1}^m \nu_j \mathcal{P}_j(\mathbf{x}_i, \boldsymbol{\alpha}_j)$$ ## ML fit specifics • Correlations between variables of \mathbf{x} are low (<5%), so we factorize the PDF for each fit component j: $$\mathcal{P}_j(\mathbf{x}, \boldsymbol{\alpha}_j) = \mathcal{P}_j(x_1, \boldsymbol{\alpha}_{1,j}) \mathcal{P}_j(x_2, \boldsymbol{\alpha}_{2,j}) ... \mathcal{P}_j(x_n, \boldsymbol{\alpha}_{n,j})$$ - Minimize $-\ln \mathcal{L}$ instead of maximizing \mathcal{L} . - The first task of the ML fit is determine n PDFs for m fit components. - The m fit components are: - 1. Signal (sig). - 2. Continuum ($q\overline{q}$). - 3. Charmless $B\overline{B}$ (chls) for some modes. - 4. Charmed BB (chrm) for some modes. - The n observables: - 1. Kinematic quantities $(m_{\rm ES}, \Delta E)$. - 2. Event-shape Fisher discriminant (\mathcal{F}) . - 3. Time-difference (Δt) . ## Kinematic variables: $m_{\rm ES}, \Delta E$ Beams 4-momentum: $$q_0 = (E_0, \mathbf{p}_0)$$ Signal B 4-momentum: $$q_B = (E_B, \mathbf{p}_B)$$ $$s \equiv q_0^2$$ * Denotes CM frame. $$\Delta E = E_B^* - \frac{1}{2}E_0^*$$ Designed to be uncorrelated. $$m_{\rm ES} = \sqrt{(\frac{1}{2}s + \mathbf{p}_0 \cdot \mathbf{p}_B)^2 / E_0^2 - p_B^2} = \sqrt{\frac{s}{4} - p_B^{*2}}$$ Lab quantities require no mass hypothesis. ## Event-shape variables Fisher discriminant (\mathcal{F}) of other event-shape variables: - 1. Angle w.r.t. beams of B momentum. - 2. Angle w.r.t. beams of B thrust axis. - 3. Zeroth angular moment L_0 . - 4. Second angular moment L_2 . $$L_i = \sum_j p_j \times \left| \cos \theta_j \right|^i$$ p_j momentum of j^{th} particle in event. angle wrt B thrust axis of particle j. Sum excludes B daughters. ## K_L^0 Reconstruction - K_L^0 's detected in EMC (60%) and IFR (40%). - Can't reconstruct K_L^0 4-momentum, obtain K_L^0 direction from η' decay vertex and centroid of EMC/IFR cluster. - Constrain masses of B and K_L^0 in vertexing. - $m_{\rm ES}/\Delta E$ 100% correlated; only ΔE in ML fit. #### Three cuts to reduce $q\overline{q}$, optimized for precision on S and C: - 1. Magnitude of missing momentum p_{miss} . - 2. Angle wrt beams of missing momentum $\cos \theta_{p_{\text{miss}}}$. 3. Output of neural network of EMC shower-shape quantities. ## Charmless BB background - Background (BG) events from charmless $B\overline{B}$ decays have broad peaks in ΔE and $m_{\rm ES}$ - Identify BG modes with generic BB MC. - Use exclusive MC for identified modes and known BF's to model charmless background. - Example from $B^0 \to \eta'_{\rho\gamma} K^0_S$: | Bkg. channel | $MC \epsilon$ $(\%)$ | Est. \mathcal{B} (10 ⁻⁶) | $\prod \mathcal{B}_i$ | Norm. $\#$ $B\overline{B}$ Bkg. | # in PDF
Bkg. file | |---|----------------------|--|-----------------------|---------------------------------|-----------------------| | $B^+ \to a_1^+ (\rho^0 \pi^+) K^0$ | 2.25 | $34.9^{+6.7}_{-6.7}$ | 0.231 | 83.4 | 5290 | | $B^0 \to \pi^+ \pi^- K^0$ | 1.14 | $44.8^{+2.6}_{-2.5}$ | 0.346 | 81.2 | 5145 | | $B^0 \to a_1^0(\rho^-\pi^+)K^0$ | 2.08 | 15* | 0.231 | 33.1 | 2100 | | $B^+ \to \rho^+ K^0$ | 0.82 | $8.0^{+1.5}_{-1.4}$ | 0.500 | 15 | 950 | | $B^0 \to \phi_{3\pi} K^0$ | 6.32 | $8.3^{+1.2}_{-1.0}$ | 0.053 | 12.8 | 809 | | $B^+ \to a_1^+ (\rho^+ \pi^0) K^0$ | 0.46 | $34.9_{-6.7}^{+6.7}$ | 0.115 | 8.5 | 537 | | $B^+ \to \rho \ K_0^*(1430)$ | 0.05 | 40* | 1.000 | 8.3 | 529 | | $B^+ \to \rho^0 K_{K_S^0 \pi^+}^{*+}$ | 1.6 | $3.6^{+1.9}_{-1.8}$ | 0.231 | 6.1 | 387 | | $B^0 \rightarrow K^+ K^- K^0$ | 0.13 | $24.7^{+2.3}_{-2.3}$ | 0.346 | 5 | 316 | | $B^0 \to \rho \ K_0^*(1430)$ | 0.05 | 20* | 1.000 | 4.6 | 292 | | $B^0 o \omega \ K^0$ | 0.61 | $5.1^{+0.6}_{-0.6}$ | 0.308 | 4.4 | 279 | | $B^+ \to \eta'_{\rho\gamma} K^{*+}_{K^0_S \pi^+}$ | 2.67 | $4.9_{-1.9}^{+2.1}$ | 0.067 | 4 | 255 | | Total | | | | 279.4 | 17463 | Expected charmless BG for each sub-decay mode: | Mode | # Events | |--|---------------| | $\eta'_{\eta\pi\pi}K_S$ | < 5 | | $\eta'_{ ho\gamma}K_S$ | 279 | | $\eta'_{\eta\pi\pi}K_{S00}$ | < 5
69 | | $\eta'_{ ho\gamma}K_{S00} \ \eta'_{5\pi}K_{S}$ | < 5 | | $\eta_{0\pi}^{\prime} K_L$ | $\frac{1}{2}$ | | $\eta_{5\pi}^{\prime\prime}K_{L}$ | < 5 | Chls BG entering fit, to be discriminated against ~1000 signal events. ## $B^0 \to \eta'_{\rho\gamma} K_S^0$ PDFs ## Time-dependent analysis - Measure Δz , convert to Δt using boost, p^{μ} of B_{CP} , τ_{B^0} . - Determine flavor of B_{tag} with tagging algorithm (next slide). - Δt and tag (\pm) go into: $$f_{\pm}(\Delta t) = \frac{e^{-|\Delta t|/\tau}}{4\tau} \left[1 \mp \eta_f S_f \sin(\Delta m_B \Delta t) \mp C_f \cos(\Delta m_B \Delta t) \right]$$ • Modify f_{\pm} for tagging performance: $$f'_{\pm} = (1 - w_{\pm})f_{\pm} +
w_{\mp}f_{\mp}$$ $$w_+$$ (w_-) : wrong tag probability for true B^0 (\overline{B}^0) $\Delta w \equiv w_+ - w_-$, $w \equiv (w_+ + w_-)/2$ $$f'_{\pm}(\Delta t) = \frac{e^{-|\Delta t|/\tau}}{4\tau} \left\{ 1 \mp \Delta w \pm (1 - 2w) \left[-\eta_f S_f \sin(\Delta m_B \Delta t) - C_f \cos(\Delta m_B \Delta t) \right] \right\}$$ - Modify f'_{\pm} for tagging efficiency asymmetry (μ) for B^0 and \overline{B}^0 . - Convolve f'_{\pm} with Δt resolution function to obtain final Δt PDF: $$\mathcal{P}_{\pm}(\Delta t | \sigma_{\Delta t}) = f'_{\pm}(\Delta t) \otimes \mathcal{R}(\Delta t, \sigma_{\Delta t})$$ ## Tagging algorithm - Neural-network-based algorithm assigns each $B_{\rm tag}$ candidate to 1 of 6 categories. - Category is determined by continuous output of algorithm (and lepton in the $B_{\rm tag}$ final state). • Cleanest tagging from semileptonic decays, such as $B_{\bullet}^0 \to D^{*} l^+ \nu_l$. • Clean tagging from $b \to c \to s$ decays, such as $B^0 \to D^{*-}\rho^+, D^{*-} \to \overline{D}^0\pi^-, \overline{D}^0 \to K^+\pi^-$ • Mistagging and experimental Δt resolution change ideal into observed Δt distribution. ## $B_{\rm flav}$ Sample - How do we get parameters for tagging $(\epsilon, w, \Delta w, \mu)$ and $\mathcal{R}(\Delta t, \sigma_{\Delta t})$? - The performance of the tagging algorithm is independent of signal mode. - Resolution on Δt is dominated by tag-side vertex. - $B_{\rm flav}$ sample: 100k (c.f. 2.5k signal events) fully reconstructed, self-tagging decays $B^0 \to D^{(*)-}(\pi^+, \; \rho^+, \; a_1^+)$. - Fit B_{flav} sample to determine tagging and resolution model parameters. ϵ : probability to be tagged $\mu \equiv \epsilon(B^0) - \epsilon(\overline{B}^0)$ $Q \equiv \epsilon (1 - 2w)^2$ $\sigma_{S,C} \propto 1/\sqrt{Q}$ | ı | Category | $\epsilon~(\%)$ | w (%) | Δw (%) | μ (%) | Q (%) | |---|-----------|-----------------|----------------|----------------|----------------|----------------| | | Lepton | 9.0 ± 0.1 | 2.8 ± 0.3 | 0.3 ± 0.5 | -0.3 ± 0.9 | 8.0 ± 0.1 | | | Kaon I | 10.8 ± 0.1 | 5.3 ± 0.3 | -0.1 ± 0.6 | 0.1 ± 0.9 | 8.7 ± 0.1 | | | Kaon II | 17.2 ± 0.1 | 14.5 ± 0.3 | 0.4 ± 0.6 | 0.6 ± 0.8 | 8.7 ± 0.2 | | | Kaon-Pion | 13.7 ± 0.1 | 23.3 ± 0.4 | -0.7 ± 0.7 | 0.2 ± 0.9 | 3.9 ± 0.1 | | | Pion | 14.2 ± 0.1 | 32.5 ± 0.4 | 5.1 ± 0.7 | -2.5 ± 0.9 | 1.7 ± 0.1 | | | Other | 9.5 ± 0.1 | 41.5 ± 0.5 | 3.8 ± 0.8 | 1.8 ± 1.0 | 0.3 ± 0.0 | | 8 | All | 74.4 ± 0.1 | | | 2 | 31.2 ± 0.3 | 75% of events are tagged. 30% effective rate due to mistagging. ## Grand Simultaneous Fit c: tagging category N_c : events in c ϵ_c : tag efficiency for c • For each sub-mode f, \mathcal{L}_f is product of $\mathcal{L}_{c,f}$ for each tagging category: $$\mathcal{L}_{f} = \prod_{c=0}^{6} \frac{e^{(-\sum_{j} \nu_{j,c})}}{N_{c}!} \prod_{i}^{N_{c}} (\nu_{\text{sig}} \epsilon_{c} \mathcal{P}_{\text{sig},c}^{i} + \nu_{q\bar{q},c} \mathcal{P}_{q\bar{q}}^{i} + \nu_{\text{chls}} \epsilon_{c} \mathcal{P}_{\text{chls},c}^{i} + \nu_{\text{chrm}} \epsilon_{c} \mathcal{P}_{\text{chrm},c}^{i}).$$ We average sub-mode results by maximizing product of \mathcal{L}_f 's while constraining all $-\eta_f S_f$ to a single value, $S_{\eta'K^0}$. 133 free parameters!! #### non- Δt PDFs: - Event yields for sig, $q\overline{q}$, chrm, are free. - Parameters of $q\overline{q}$ are free in fit. - sig, chrm, chls parameters fixed to values from MC. | Mode | Components | | | | | | |-----------------------------|-------------------------------------|--|--|--|--|--| | $\eta'_{\eta\pi\pi}K_S$ | $\operatorname{sig},q\overline{q}$ | | | | | | | $\eta'_{ ho\gamma}K_S$ | $sig, q\overline{q}, chls^*, chrm$ | | | | | | | $\eta'_{\eta\pi\pi}K_{S00}$ | $\operatorname{sig}, q\overline{q}$ | | | | | | | $\eta'_{ ho\gamma}K_{S00}$ | $sig, q\overline{q}, chls^*, chrm$ | | | | | | | $\eta_{5\pi}'K_S$ | $\operatorname{sig}, q\overline{q}$ | | | | | | | $\eta'_{\eta\pi\pi}K_L$ | $sig, q\overline{q}, chls^*$ | | | | | | | $\eta_{5\pi}'K_L$ | sig, $q\overline{q}$ *fixed yield | | | | | | | $\Delta t \text{ mo}$ | dels) Para | meter Sourc | e | |---------------------------------|---------------------|-------------------------|------------| | Component | Tagging | $\mathcal{R}(\Delta t)$ | S, C | | sig | $B_{ m flav}$ | $B_{ m flav}$ | free | | $ rac{{ m sig}}{q\overline{q}}$ | τ_B fixed to 0 | free | n/a | | chls | $B_{ m flav}$ | chls MC | fixed to 0 | | chrm | $B_{ m flav}$ | chrm MC | fixed to 0 | ## Fit validation: toy MC experiments - Perform 150-550 simulated experiments using toy datasets: - Generate $q\overline{q}$ and charmed $B\overline{B}$ events from factorized PDFs, - Embed MC events for signal and charmless $B\overline{B}$. - Estimate bias due to correlations in signal and residual contributions of backgrounds and misreconstructed signal. - Confirm that uncertainties reported by fit are reasonable. | Final state | # toy
experiments | # sig
input | # chls input | Signal
Bias | Bias on S | Bias on C | |---|----------------------|----------------|--------------|-----------------|--------------------|--------------------| | $\eta'_{\eta\pi\pi}K^0_{_S}$ | 550 | 470 | 0 | -3.7 ± 0.5 | 0.010 ± 0.007 | -0.012 ± 0.005 | | $\eta_{ ho\gamma}^{\prime\prime}K_{\scriptscriptstyle S}^0$ | 260 | 970 | 279 | 35.1 ± 1.4 | 0.002 ± 0.007 | -0.007 ± 0.006 | | $\eta_{\eta\pi\pi}^{\prime\prime}K_{s00}^{0}$ | 200 | 108 | 0 | -3.0 ± 0.6 | 0.080 ± 0.034 | 0.022 ± 0.020 | | $\eta_{ ho\gamma}^{\prime\prime}K_{s00}^{0}$ | 270 | 199 | 69 | 7.3 ± 1.3 | 0.054 ± 0.022 | -0.007 ± 0.016 | | $\eta_{5\pi}^{\prime\prime}K_{\scriptscriptstyle S}^0$ | 190 | 173 | 0 | -1.8 ± 0.4 | 0.021 ± 0.020 | -0.009 ± 0.014 | | $\eta'_{\eta\pi\pi}K^0_{\scriptscriptstyle L}$ | 235 | 353 | 22 | -25.3 ± 1.7 | -0.019 ± 0.018 | -0.007 ± 0.013 | | $\eta_{5\pi}'K_{\scriptscriptstyle L}^0$ | 140 | 170 | 0 | -9.5 ± 1.5 | 0.099 ± 0.035 | 0.007 ± 0.022 | | Weighted Avg. | | | | | 0.013 ± 0.004 | -0.007 ± 0.003 | | Simultaneous $\eta' K^0$ Fit | 175 | | u | nbiased fit | 0.006 ± 0.006 | -0.008 ± 0.006 | | Simultaneous $\eta' K_S^0$ Fit | 175 | | | | 0.008 ± 0.006 | -0.007 ± 0.005 | | Simultaneous $\eta' K_L^0$ Fit | 175 | | | | 0.003 ± 0.014 | -0.006 ± 0.011 | ## Systematic Errors #### PDF parameterization: • Vary fixed parameters by amounts found in studies of data control samples $(B_{\text{flav}}, B^- \to D^0 \pi^-, B^+ \to \eta' K^+)$. #### BB background: - Vary S and C for chls, chrm components. - Vary fixed charmless yields by $\pm 20\%$. | Source of error | $\sigma(S)$ | $\sigma(C)$ | |----------------------------|--------------------|-----------------| | Beam position/size | 0.002 | 0.001 | | SVT alignment | $+0.002 \\ -0.001$ | +0.003 -0.002 | | Tag-side interference | 0.001 | 0.015 | | Self-crossfeed | 0.006 | 0.003 | | Fit Bias | 0.006 | 0.006 | | PDF Shapes | 0.005 | 0.009 | | $B\overline{B}$ Background | 0.008 | 0.004 | | Signal Δt Shape | 0.009 | 0.010 | | Total | 0.016 | 0.022 | #### Signal Δt parameterization: - Comparing toy MC studies performed with Δt parameters ($\mathcal{R}(\Delta t)$ and tagging) from signal and B_{flav} MC. - Estimate effects due to differences between signal and $B_{\rm flav}$ data. ## $B^0 \to \eta' K^0$ Results arXiv:0809.1174 (submitted to PRD) | | $\eta'_{\eta\pi\pi}K^0_{\scriptscriptstyle S}$ | $\eta_{ ho\gamma}'K_{\scriptscriptstyle S}^0$ | $\eta'_{\eta\pi\pi}K^0_{s00}$ | $\eta_{ ho\gamma}'K_{s00}^0$ | $\eta_{5\pi}'K_{\scriptscriptstyle S}^0$ | $\eta'_{\eta\pi\pi}K^0_{\scriptscriptstyle L}$ | $\eta_{5\pi}'K_{\scriptscriptstyle L}^0$ | | | |---------------|--|---|-------------------------------|------------------------------|--|--|--|--|--| | Events to fit | 1470 | 22775 | 1056 | 27057 | 513 | 12217 | 4586 | | | | Signal yield | 472 ± 24 | 1005 ± 40 | 105 ± 13 | 206 ± 28 | 171 ± 14 | 341 ± 32 | 158.7 ± 21.6 | | | | Chls yield | _ | 279 | \$6(500.T | 69 | <u> </u> | 22 | | | | | Chrm yield | | 253 ± 67 | _ | 530 ± 84 | _ | _ | | | | | $-\eta_f S_f$ | 0.70 ± 0.17 | 0.46 ± 0.12 | 0.51 ± 0.34 | 0.26 ± 0.33 | 0.76 ± 0.26 | 0.65 ± 0.22 | 0.66 ± 0.46 | | | | C_f | -0.17 ± 0.11 | -0.13 ± 0.09 | -0.19 ± 0.30 | 0.04 ± 0.26 | 0.05 ± 0.20 | 0.07 ± 0.19 | 0.02 ± 0.26 | | | | Combined: | 3333333 | | | | | | | | | | | | $S_{\eta'K_S^0} = 0.537 \pm 0.084$ $C_{\eta'K_S^0} = -0.118 \pm 0.062$ $-1 \cdot S_{\eta'K_L^0} = 0.642 \pm 0.198$ $C_{\eta'K_L^0} = 0.047 \pm 0.154$ | | | | | | | | | 3333111 | | $C_{\eta'K_S^0}$ | | $C_{\eta'K_L^0} =$ | 0.047 ± 0.154 | | | | | | | | | | | | | | | | $$S_{\eta'K^0} = 0.551 \pm 0.777$$ $C_{\eta'K^0} = -0.094 \pm 0.058$ • With about 1500 $B^0 \to \eta' K_S^0$ and 300 $B^0 \to \eta' K_L^0$ flavortagged decays, we find these bias-corrected results: $$S_{\eta'K^0} = 0.545 \pm 0.077 \pm 0.016$$ $C_{\eta'K^0} = -0.086 \pm 0.058 \pm 0.022$ $S_{\eta'K_S^0} = 0.529 \pm 0.084 \pm 0.016$ $C_{\eta'K_S^0} = -0.111 \pm 0.062 \pm 0.024$ $S_{\eta'K_L^0} = 0.639 \pm 0.198 \pm 0.033$ $C_{\eta'K_L^0} = 0.053 \pm 0.154 \pm 0.029$ ## $B^0 \to \eta' K_L^0$ Results #### Signal-enhanced projections Projections of ΔE and Δt with optimized,
mode-dependent requirement on $$rac{\mathcal{L}_{\mathrm{S}}}{\mathcal{L}_{\mathrm{S}} + \mathcal{L}_{\mathrm{B}}}$$ to enhance the signal. ## $B^0 \to \eta' K_S^0$ Results Signal-enhanced projections of $m_{\rm ES}, \Delta E, \text{ and } \Delta t$ ## $B^0 \to \omega K_S^0$ arXiv:0809.1174 (submitted to PRD) • 163 \pm 18 signal events with $\omega \to \pi^+\pi^-\pi^0$ and $K_S^0 \to \pi^+\pi^-$ $$S = 0.55^{+0.26}_{-0.29} \pm 0.02$$ $$C = -0.52^{+0.22}_{-0.20} \pm 0.03$$ ## $B^0 \to K^+K^-K^0_S$ arXiv:0808.0700 - Reconstruct $K_S^0 \to \pi^+\pi^-$ and $\pi^0\pi^0$. - Time-dependent amplitude analysis, model uses ϕK_S^0 , $f_0 K_S^0$, $X_0 K_S^0$, NR, $\chi_{c0} K_S^0$, $D^+ K^-$, $D_s^+ K^-$ - Fit entire Dalitz plot, then fit lowmass $(m_{K^+K^-} < 1.1 \text{ GeV})$ and highmass $(m_{K^+K^-} > 1.1 \text{ GeV})$ regions. | Fit | Signal yield | |-----------|---------------| | Whole DP | 1428 ± 47 | | High-Mass | 1011 ± 39 | | Low-mass | 421 ± 25 | $\frac{\pi}{2} - \beta$ ambiguity in $\sin 2\beta$ ruled out at 4.8σ . | Fit | $A_{CP} (-C_f)$ | $eta_{ ext{eff}}$ (| $(\beta_{\rm SM} \simeq 0.37)$ | |------------------|--------------------------|---------------------|--------------------------------| | Whole DP | $0.03 \pm 0.07 \pm 0.02$ | 0.44 | $\pm 0.07 \pm 0.02$ | | High-Mass | $0.05 \pm 0.09 \pm 0.04$ | 0.52 ± 0.52 | $\pm 0.08 \pm 0.03$ | | ϕK_S^0 | $0.14 \pm 0.19 \pm 0.02$ | 0.13 = | $\pm 0.13 \pm 0.02$ | | $\int f_0 K_S^0$ | $0.01 \pm 0.26 \pm 0.07$ | 0.15 = | $\pm 0.13 \pm 0.03$ | #### Events / (1 MeV/ 00 00 00 m_{ES} (GeV/c² 5.29 5.27 5.28 5.26 $m_{ES} (GeV/c^2)$ ents / 1.6 ps **BABAR**Preliminary Whole DP 50 0 Δt (ps) Asymmetry **BABAR**Preliminary Whole DP -5 Δt (ps) **BABAR**Preliminary #### $_s\mathcal{P}lots^1$ Accumulate probability to be signal (computed without plotted variable) in bins of variable of interest. Overlay normalized PDF. ¹Pivk and LeDiberder, NIM Phys. Res., Sect. A 555, 356 (2005). ## $B^0 \to \pi^0 K_S^0$ arXiv:0809.1174 (submitted to PRD) - No tracks from B decay vertex! - 60% of signal B candidates make hits in inner silicon tracker (SVT). - Obtain Δt in these events w/ constraints on average interaction point and B lifetime. - Δt resolution comparable to other modes (~1ps). - All 556 ± 32 signal events constrain C. $$S = 0.55 \pm 0.20 \pm 0.03$$ $C = 0.13 \pm 0.13 \pm 0.03$ ### Results Summary | | $-\eta_f S_f$ | C_f | |----------------------|--------------------------|---------------------------| | $\eta' K^0$ | $0.55 \pm 0.08 \pm 0.02$ | $-0.09 \pm 0.06 \pm 0.02$ | | $\eta' K_S^0$ | $0.53 \pm 0.08 \pm 0.02$ | $-0.11 \pm 0.06 \pm 0.02$ | | $\eta' ilde{K_L^0}$ | $0.64 \pm 0.20 \pm 0.03$ | $0.05 \pm 0.15 \pm 0.03$ | - In 2005, naive average of ΔS was 3.7σ from zero. - Discrepancy has shrunk to 0.7σ . - C measurements consistent w/ 0. - No indication of new physics. - The B-factories have exceeded all expectations! - CKM phase is the dominant source of CP violation! ## New physics flavor puzzle at the LHC - New physics (NP) expected at energy scale $\Lambda \sim 1 \text{ TeV}$, - to prevent divergence of the Higgs mass. - New physics flavor puzzle: How does NP, expected to have generic flavor structure, maintain the observed flavor structure of the Standard Model? - Solution: NP follows principle of minimal flavor violation¹ (MFV); - i.e., the SM Yukawa couplings are the dominant source of flavor violation. - It may be possible to experimentally *exclude* MFV at the LHC; consider this fortunate scenario²: - \tilde{t} is next-to-lightest SUSY particle. - $\tilde{t} \to \chi_1^0 b$ is kinematically forbidden. - Large decay rate for $\tilde{t} \to \chi_1^0 c$ can exclude MFV. ¹ D'Ambrosio, Giudice, Isidori, Strumia, hep-ph/0207036; Cirigliano, Grinstein, Isidori, Wise, hep-ph/0507001, hep-ph/0608123; Isidori, Mescia, Paradisi, Smith, Trine, hep-ph/0604074; Nikolidakis, Smith, arXiv:0710.3129; ² Hiller and Nir, arXiv:0802.0916 Nir, arXiv:0708.1872 ### Summary - $\sin 2\beta$ measured in $b \to c\bar{c}s$ decays such as $B^0 \to J/\psi K^0$. - $\sin 2\beta_{\text{eff}}$ measured in $b \to q\bar{q}s$ penguin decays such as $B^0 \to \eta' K^0$. - In Standard Model $\sin 2\beta_{\rm eff} \simeq \sin 2\beta$. - $\sin 2\beta_{\text{eff}}$ sensitive to non-SM particles in the loop. - In 2005, there was large discrepancy ($\sim 4\sigma$) between $\sin 2\beta$ and $\sin 2\beta_{\rm eff}$. - Current measurements differ by only $\sim 1\sigma$. - CKM phase is the sole source of *CP* violation. - New physics flavor puzzle: If new physics is there at $\Lambda \sim 1$ TeV, why do we find no evidence at B-factories? - At LHC, Minimal Flavor Violation will be easier to exclude than confirm. ## Summary | | $-\eta_f S_f$ | C_f | |---------------|--------------------------|---------------------------| | $\eta' K^0$ | $0.55 \pm 0.08 \pm 0.02$ | $-0.09 \pm 0.06 \pm 0.02$ | | $\eta' K^0_S$ | $0.53 \pm 0.08 \pm 0.02$ | $-0.11 \pm 0.06 \pm 0.02$ | | $\eta' K_L^0$ | $0.64 \pm 0.20 \pm 0.03$ | $0.05 \pm 0.15 \pm 0.03$ | #### A Tale of Two Bases - The Standard Model describes Nature in terms of $SU(3)_C \times SU(2)_L \times U(1)_Y$ gauge symmetry. - $SU(2)_L \times U(1)_Y$ sub-group is spontaneously broken by Higgs mechanism putting Yukawa term in Lagrangian: $$\mathcal{L}_Y = -\lambda_{ij}^d \overline{Q}_i^L \phi d_j^R - \lambda_{ij}^u \overline{Q}_i^L \phi_c u_j^R + \text{h.c.},$$ • Change from flavor basis into new basis that diagonalizes $\lambda^{u,d}$: $$\mathcal{L}'_{Y} = -\frac{v}{\sqrt{2}} \lambda_{ii}^{d'} \overline{d}_{i}^{L'} d_{i}^{R'} - \frac{v}{\sqrt{2}} \lambda_{ii}^{u'} \overline{u}_{i}^{L'} u_{i}^{R'} + \text{h.c.}$$ • This term describes quarks with masses: $$m_{ii}^d = \frac{v}{\sqrt{2}} \lambda_{ii}^{d\prime}, \quad m_{ii}^u = \frac{v}{\sqrt{2}} \lambda_{ii}^{u\prime}$$ • Quark fields in this mass basis: $$u_i^{L'} = U_{ij}^u u_i^L, \quad d_i^{L'} = U_{ij}^d d_i^L$$ | $\lambda^{u,d}$ | 3x3 complex matrices | | | | |---------------------------------|----------------------|--|--|--| | \overline{Q}^L | quark doublet | | | | | u^R, d^R | quark singlets | | | | | ϕ | Higgs doublet | | | | | i,j | flavor indices | | | | | $\phi_c \equiv -i\tau_2 \phi^*$ | | | | | ## $B\overline{B}$ Time Evolution Mass and flavor eigenstates differ: $$|B_L\rangle = p|B^0\rangle + q|\overline{B}^0\rangle |B_H\rangle = p|B^0\rangle - q|\overline{B}^0\rangle$$ $\Delta m_B \equiv m_H - m_L$ $\Delta \Gamma_B \equiv \Gamma_H - \Gamma_L$ - Note $\Delta\Gamma_B \ll \Delta m_B$ (in K system $\Delta\Gamma_K \simeq 2\Delta m_K$). - Neutral B's mix via second-order weak process (box diagram). - Write time-dependent Schrodinger equation for two-state system with mixing and decay; write state of particle produced as B^0 at t=0 in terms of mass states and eigenvalues of Hamiltonian $\lambda_{L,H}$: $$|B_{\rm phys}^0(t)\rangle = \frac{1}{2p} \left[e^{-i\lambda_H t} |B_H\rangle + e^{-i\lambda_L t} |B_L\rangle \right]$$ • In terms of $M=(M_H+M_L)/2$ and $\Gamma\simeq\Gamma_H\simeq\Gamma_L$: $$|B_{\rm phys}^{0}(t)\rangle = e^{-iMt}e^{-\Gamma t/2} \left[\cos\left(\frac{1}{2}\Delta m_{B}t\right) |B^{0}\rangle + i\frac{q}{p}\sin\left(\frac{1}{2}\Delta m_{B}t\right) |\overline{B}^{0}\rangle \right]$$ • Similarly for $|\overline{B}_{\rm phys}^0(t)\rangle$. # $\sin 2\beta_{\rm eff}$ from $b \to q \bar q s$ penguin decays - $b \to q\bar{q}s$ decays occur via loop processes in SM. - $b \to s$ penguins also sensitive to $\sin 2\beta$ but with theoretical uncertainty from tree and Cabibbo-suppressed penguin pollution: - In terms of tree (T) and penguin (P_q , q=u,c,t) contributions: $$A_{\eta'K^0} = P_t V_{tb} V_{ts}^* + P_c V_{cb} V_{cs}^* + (P_u + T) V_{ub} V_{us}^*$$ Unitarity gives $$A_{\eta'K^0} = (P_c - P_t)V_{cb}V_{cs}^* + (P_u - P_t + T)V_{ub}V_{us}^*$$ $$\simeq \mathcal{O}(\lambda^2) + \mathcal{O}(\lambda^4)$$ - The first term, with same weak phase as $b \to c\overline{c}s$ decays, dominates. - However, $|\overline{A}_{\eta'K^0}|/|A_{\eta'K^0}|-1=\mathcal{O}(\lambda^2)$, so $$S_{\eta' K^0} = \sin 2\beta_{\text{eff}} \simeq \sin 2\beta$$ #### Maximum likelihood method - Consider set of N measurements of a quantity x distributed according to a probability density function (PDF) $\mathcal{P}(x, \boldsymbol{\alpha})$ where $\boldsymbol{\alpha}$ is a set of n parameters $\boldsymbol{\alpha} = \{\alpha_1, \alpha_2, ..., \alpha_n\}$. - The likelihood function is defined: - Given the data (x_i) , the likelihood gives the relative probability for values of parameters α . The maximum of \mathcal{L} over parameter space α gives an unbiased estimate of α . $\mathcal{L} = \prod_{i}^{N} \mathcal{P}(x_i, \boldsymbol{\alpha})$ • For large N, $\mathcal{L}(\alpha_i)$ is Gaussian near maximum $\mathcal{L}_{\max} \equiv \mathcal{L}(\hat{\alpha}_i)$: $$\mathcal{L}(\alpha_i) = \mathcal{L}_{\max} e^{-\frac{(\alpha_i - \hat{\alpha}_i)^2}{2\sigma^2}}$$ - Statistical uncertainty σ_i on α_i is $\frac{1}{\sigma_i^2} = \frac{\partial^2 \ln \mathcal{L}}{\partial \alpha_i^2}$. - We compute the significance (\mathcal{S}) of a fit result (\mathcal{L}_{max}) relative to some other hypothesis, e.g. the zero signal hypothesis (\mathcal{L}_0), with the likelihood ratio test: $\mathcal{S} = -2 \ln \frac{\mathcal{L}_{max}}{\mathcal{L}_0}$. ## ML fit specifics - If N is a random variable, construct *extended* likelihood with factor for Poisson probability of making N measurements when expecting ν . - We use multiple observables so $x \to \mathbf{x}$, where $\mathbf{x} = \{x_1, x_2, ..., x_m\}$. - The PDF $\mathcal{P}(\mathbf{x}, \boldsymbol{\alpha})$ is a composite with each part corresponding to a component of the data, such as signal or background. - Correlations between variables of \mathbf{x} are low (<5%), so we factorize the PDF for each fit component j:
$\mathcal{P}_j(\mathbf{x}) = \mathcal{P}_j(x_1)\mathcal{P}_j(x_2)...\mathcal{P}_j(x_m)$. - In practice, \mathcal{L} is very small and computationally difficult, so we minimize $-2 \ln \mathcal{L}$ instead of maximizing \mathcal{L} . - The likelihood for N events with signal (sig) and background (bkg) components: $$egin{pmatrix} \mathcal{L} &= & rac{e^{-(u_{ m sig} + u_{ m bkg})}}{N!} \prod_i^N u_{ m sig} \mathcal{P}_{ m sig}(\mathbf{x}_i, oldsymbol{lpha}_{ m sig}) + u_{ m bkg} \mathcal{P}_{ m bkg}(\mathbf{x}_i, oldsymbol{lpha}_{ m bkg}) \end{pmatrix}$$ where $\nu_{\rm sig}$ and $\nu_{\rm bkg}$ (the estimators of the sig and bkg event yields) are free to vary in the fit. ## KL cut optimization Table A.1: Results from cut optimization study for $\eta'_{\eta\pi\pi}K_L^0$. The "Very Tight" cut values maximize signal significance $(S/\sqrt{S+B})$. The "Loose" cut values minimize the errors on S and C from toy MC studies and are used in this analysis. We report cut values, events entering the Run1-6 fit, signal efficiency, expected Run1-6 signal yield, mean of the S and C error distributions for embedded toys with Run1-6 statistics, and blind fit values to run1-6 data as a final crosscheck. | | Very Tight | Tight | Loose | Very Loose | |---------------------------------|-------------------|-------------------|-------------------|-------------------| | NN output Cut | 0.50 | 0.40 | 0.30 | 0.20 | | $P_{ m miss}^{ m proj}$ Cut | -0.46 | -0.60 | -0.70 | -0.80 | | $\cos \theta_{P_{ m miss}}$ Cut | 0.93 | 0.94 | 0.95 | 0.96 | | Events to Fit | 6253 | 8826 | 12085 | 14992 | | $MC \epsilon (\%)$ | 15.2 | 17.6 | 19.8 | 21.0 | | Expected nSig | 249 | 310 | 353 | 375 | | S error | 0.310 ± 0.004 | 0.273 ± 0.003 | 0.257 ± 0.003 | 0.262 ± 0.003 | | C error | 0.222 ± 0.002 | 0.198 ± 0.002 | 0.191 ± 0.002 | 0.190 ± 0.001 | | blind S | -0.76 ± 0.26 | -0.68 ± 0.24 | -0.68 ± 0.22 | -0.59 ± 0.22 | | blind C | 0.09 ± 0.22 | 0.05 ± 0.21 | 0.04 ± 0.19 | 0.05 ± 0.19 | ## Charm BB background - Typically, charm events are absorbed into continuum background yield in ML fit. - In previous analyses, charmless yield floated 1.6 -- 5 times higher than expected. - Bias on charmless yield was negative. - In mode etap K+, projection of charmless events onto mES shows contamination from non-peaking events -- charm or qq? - With charm component in ML fit projections look more reasonable. - Charm and charmless yields float to reasonable values in ML fit. Charm PDF is $q\bar{q}$ like with small peaking component. #### sPlots Accumulate probability to be signal (computed without plotted variable) in bins of variable of interest. Overlay normalized PDF. ## Tagging algorithm - Neural-network-based algorithm assigns each $B_{\rm tag}$ candidate to 1 of 6 categories. - Category is determined by continuous output of algorithm (and lepton in the $B_{\rm tag}$ final state). • Clean tagging from $b \to c \to s$ decays, such as $B^0 \to D^{*-} \rho^+, \ D^{*-} \to \overline{D}^0 \pi^-, \ \overline{D}^0 \to K^+ \pi^-$ ## Δt resolution function - Sum of 3 Gaussians (core, tail, and outlier). - The means and widths of core, tail Gaussians are scaled by uncertainty on Δt ($\sigma_{\Delta t}$). $G(x, \mu, \sigma)$ is Gaussian in x of mean μ and width σ . Parameters differ b/w tagging categories. ## Validating fit uncertainties Table 1: Mean values of the error distributions for S and C and the RMS of the S and C distributions for each sub-mode from 140-550 embedded toy MC experiments. (The number of experiments is the maximum without oversampling the signal MC.) We also report the averaged sub-mode results and the results from 175 toy experiments for the simultaneous fit. All results are reported in units of 10^{-3} . | Final state | Mean of S Error | $RMS ext{ of } S ext{ Error}$ | RMS of S dist. | Mean of C Error | RMS of C Error | $RMS ext{ of } C ext{ dist.}$ | |---|-------------------|---------------------------------|------------------|-----------------|------------------|---------------------------------| | $\eta'_{\eta\pi\pi}K^0_{_S}$ | 156 ± 1 | 14 ± 1 | 167 ± 8 | 115 ± 1 | 5 ± 1 | 121 ± 6 | | $\eta_{ ho\gamma}^{\prime\prime}K_{\scriptscriptstyle S}^0$ | 112 ± 1 | 8 ± 1 | 114 ± 7 | 88 ± 1 | 3 ± 1 | 97 ± 6 | | $\eta_{\eta\pi\pi}^{''} ilde{K}_{s00}^{0}$ | 381 ± 5 | 75 ± 5 | 481 ± 34 | 267 ± 2 | 31 ± 2 | 280 ± 20 | | $\eta_{ ho\gamma}^{\prime}K_{s00}^{0}$ | 325 ± 3 | 53 ± 3 | 357 ± 22 | 258 ± 2 | 36 ± 2 | 267 ± 16 | | $\eta_{5\pi}^{\prime\prime}K_{S}^{0}$ | 246 ± 3 | 38 ± 3 | 280 ± 20 | 180 ± 1 | 14 ± 1 | 192 ± 14 | | $\eta'_{\eta\pi\pi}K^0_{\scriptscriptstyle L}$ | 271 ± 2 | 32 ± 2 | 278 ± 18 | 199 ± 1 | 15 ± 1 | 201 ± 13 | | $\eta_{5\pi}^{\prime}K_{\scriptscriptstyle L}^0$ | 358 ± 6 | 70 ± 6 | 416 ± 35 | 265 ± 3 | 32 ± 3 | 263 ± 22 | | Weighted | | | | | | | | Average: | 76 ± 0 | 7 ± 0 | 79 ± 5 | 57 ± 0 | 2 ± 0 | 61 ± 4 | | Simultaneous Fit: | 75 ± 0 | 3 ± 0 | 75 ± 6 | 58 ± 0 | 2 ± 0 | 61 ± 6 | ### Systematic Errors - Beamspot position: Fit MC with reasonable variations in y, sig y. - <u>SVT alignment</u>: Fit MC with reasonable SVT mis-alignment. - <u>Tag-side interference</u>: With toy MC estimate effect of interference b/w CKM-suppressed bb ra ub c db and favored b ra u cb d amplitudes - <u>Misreconstructed Signal</u>: Depending on sub-mode, in 1-4% of reconstructed signal events we swap track with rest of event. We embed various concentrations of *self-crossfeed* to estimate effect on DT and S/C. - Fit bias: Take uncertainty on fit bias as systematic. - <u>PDF parameterization</u>: Vary fixed params by amounts found in studies of data control samples (Bflav, B ra D pi, eta` K+) take DS/DC as systematic. - <u>BB background</u>: Vary CP params for chls, chrm components; vary fixed charmless yield by +-20%. - <u>Signal DT parameterization</u>: By comparing toy MC studies performed with DT params (calR and tagging) from signal and Bflav MC, we estimate effects due to differences between signal and Bflav data. | Source of error | $\sigma(S)$ | $\sigma(C)$ | |----------------------------|--------------------|-----------------| | Beam position/size | 0.002 | 0.001 | | SVT alignment | $+0.002 \\ -0.001$ | +0.003 -0.002 | | Tag-side interference | 0.001 | 0.015 | | Self-crossfeed | 0.006 | 0.003 | | Fit Bias | 0.006 | 0.006 | | PDF Shapes | 0.005 | 0.009 | | $B\overline{B}$ Background | 0.008 | 0.004 | | Signal Δt Shape | 0.009 | 0.010 | | Total | 0.016 | 0.022 | #### Crosschecks - Including PDFs for m_{η} , m_{ρ} , $\theta_{\rm dec}^{\rho}$ does not improve precision on S and C. - Fit is stable without PDFs for (one-at-a-time). $m_{\rm ES}, \Delta E, \text{ and } \mathcal{F}$ - S and C are consistent across tagging categories. - Δt model is reasonable: $\tau = 1.53 \pm 0.07 \; (\text{PDG is } 1.5 \pm 0.01)$ - S and C in charged modes consistent with zero. | Fit vars | $m_{\rm ES},\Delta E,\mathcal{F},\Delta t$ | $\Delta E, \mathcal{F}, \Delta t$ | $m_{\mathrm{ES}},\mathcal{F},\Delta t$ | $m_{\mathrm{ES}},\!\Delta E,\Delta t$ | |--|--|-----------------------------------|--|---------------------------------------| | S | -0.481 ± 0.078 | -0.471 ± 0.080 | -0.512 ± 0.077 | -0.535 ± 0.082 | | C | 0.174 ± 0.058 | 0.159 ± 0.062 | 0.164 ± 0.059 | 0.165 ± 0.063 | | Signal Yields | | | | | | $\eta'_{\eta\pi\pi}K^0_S$ | 468.8 ± 23.5 | 465.4 ± 26.2 | 461.8 ± 23.5 | 475.1 ± 24.9 | | $\eta_{ ho\gamma}^{\prime}K_{S}^{0}$ | 999.0 ± 39.6 | 997.0 ± 47.5 | 966.7 ± 46.9 | 1007.2 ± 45.4 | | $\eta'_{\eta\pi\pi}K^0_{S00}$ | 104.3 ± 13.0 | 107.4 ± 15.8 | 104.3 ± 12.7 | 111.3 ± 18.0 | | $\eta_{ ho\gamma}^{\prime}K_{S00}^{0}$ | 201.9 ± 27.4 | 288.7 ± 44.6 | 196.2 ± 29.7 | 201.9 ± 44.9 | | $\eta_{5\pi}'K_S^0$ | 170.5 ± 14.1 | 177.4 ± 15.8 | 175.9 ± 23.1 | 172.3 ± 14.9 | | $\eta'_{\eta\pi\pi}K_{\scriptscriptstyle L}^0$ | 331.5 ± 31.4 | 334.9 ± 31.5 | 334.6 ± 29.1 | 334.6 ± 31.5 | | $\eta_{5\pi}^{\prime}K_{\scriptscriptstyle L}^0$ | 163.9 ± 21.8 | 160.9 ± 21.6 | 160.8 ± 19.8 | 160.7 ± 21.6 | | Tag Cat | S | C | |------------------|--------------------|-------------------| | Lepton | -0.670 ± 0.134 | 0.122 ± 0.105 | | Kaon1 | -0.315 ± 0.146 | 0.132 ± 0.107 | | Kaon2 | -0.569 ± 0.150 | 0.297 ± 0.117 | | KaonPion | -0.246 ± 0.255 | 0.080 ± 0.185 | | Pions | -0.205 ± 0.365 | 0.263 ± 0.257 | | Other | -1.414 ± 1.010 | 0.624 ± 0.710 | | Weighted Average | -0.492 ± 0.076 | 0.174 ± 0.057 | | Nominal Result | -0.481 ± 0.078 | 0.174 ± 0.058 | | L | 1 1 CSult | 0.401 ± 0.010 | 0.114 ± 0.000 | |---|--|--|--------------------------------------| | (| | Nominal Fit | All-Variable Fit | | | $\eta'_{\eta\pi\pi}K^0_S$ | | | | | S | | -0.629 ± 0.165 | | | C | 0.231 ± 0.110 | 0.217 ± 0.109 | | | $\eta_{ ho\gamma}'K_{\scriptscriptstyle S}^0$ | | | | | S | | -0.373 ± 0.116 | | | C | 0.217 ± 0.090 | 0.199 ± 0.086 | | | $\eta'_{\eta\pi\pi}K^0_{s00}$ | | | | | S | -0.402 ± 0.347 | -0.390 ± 0.342 | | | C | 0.232 ± 0.301 | 0.266 ± 0.301 | | | $\eta'_{ ho\gamma}K^0_{s00} \ S$ | | | | | S | -0.179 ± 0.331 | -0.518 ± 0.336 | | | C | 0.029 ± 0.261 | 0.107 ± 0.263 | | | $\eta_{5\pi}'K_S^0$ | | | | | S | -0.650 ± 0.261 | -0.671 ± 0.260 |
| | C | 0.036 ± 0.199 | 0.039 ± 0.198 | | | $\eta'_{\eta\pi\pi}K^0_{\scriptscriptstyle L}$ | | | | | S | -0.684 ± 0.223 | -0.692 ± 0.218 | | | C | 0.036 ± 0.194 | 0.033 ± 0.184 | | | combined S | -0.482 ± 0.079 | -0.507 ± 0.078 | | l | combined C | 0.179 ± 0.059 | 0.171 ± 0.058 | | | C C C | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 0.033 ± 0.184 -0.507 ± 0.078 | # Averaging results - In LMR: - Obtain $-2 \ln \mathcal{L}_f$ as function of ηK_1^* branching fraction (\mathcal{B}) for each sub-mode. - Convolve $-2 \ln \mathcal{L}_f(\mathcal{B})$ w/ Gaussian of with $\sigma_{\rm syst}$. - Value at minimum of $\sum -2 \ln \mathcal{L}_f(\mathcal{B})$ is average branching fraction $(\hat{\mathcal{B}})$. - 68% confidence interval on $\hat{\mathcal{B}}$ is σ such that $-2 \ln \mathcal{L}(\hat{\mathcal{B}} \pm \sigma) = 1$. Dashed sub-mode curves - In HMR: - ηK_0^* and ηK_2^* are highly correlated (40%). - Combining with $-2 \ln \mathcal{L}_f(\mathcal{B})$ curves neglects correlations. - We average with simultaneous fits (as in $\eta' K^0$ analysis), one fit for 2 neutral modes, one for 4 charged modes.